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Abstract

Medical image segmentation leverages topological connectivity theory to en-
hance edge precision and regional consistency. However, existing deep net-
works integrating connectivity often forcibly inject it as an additional feature
module, resulting in coupled feature spaces with no standardized mechanism
to quantify different feature strengths. To address these issues, we propose
DCFFSNet (Dual-Connectivity Feature Fusion-Separation Network). It in-
troduces an innovative feature space decoupling strategy. This strategy quan-
tifies the relative strength between connectivity features and other features.
It then builds a deep connectivity feature fusion-separation architecture. This
architecture dynamically balances multi-scale feature expression. Experi-
ments were conducted on the ISIC2018, DSB2018, and MoNuSeg datasets.
On ISIC2018, DCFFSNet outperformed the next best model (CMUNet) by
1.3% (Dice) and 1.2% (IoU). On DSB2018, it surpassed TransUNet by 0.7%
(Dice) and 0.9% (IoU). On MoNuSeg, it exceeded CSCAUNet by 0.8% (Dice)
and 0.9% (IoU). The results demonstrate that DCFFSNet exceeds existing
mainstream methods across all metrics. It effectively resolves segmentation
fragmentation and achieves smooth edge transitions. This significantly en-
hances clinical usability.

Keywords: Medical image segmentation, Topological connectivity,
Feature space decoupling, DCFFSNet, Multi-scale fusion

1. Introduction

Medical image segmentation aims to perform pixel-level classification of
organs or lesion regions in medical images, a task that poses significant chal-
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lenges in terms of technical requirements and time costs for physicians. Tra-
ditional methods primarily rely on manually designed feature extraction.
While they can effectively handle geometric deviations [1, 2, 3], their per-
formance in segmenting complex structures (such as organs or lesion regions
with variable shapes and textures) is suboptimal.

In topology, connectivity describes how adjacent pixels are interrelated
[4]. By defining the adjacency relationships between pixels, connectivity
establishes spatial continuity constraints. This mathematical description ef-
fectively addresses two key shortcomings of traditional segmentation meth-
ods. First, by enhancing the modeling of correlations among edge pixels, it
mitigates edge blurring caused by insufficient utilization of gradient infor-
mation. Second, by establishing topological dependencies between regions,
it improves the spatial consistency of segmentation results. Segmentation
techniques based on connectivity models have achieved significant progress
[5, 6, 7]. These connectivity-based techniques demonstrate stronger capabil-
ities in handling images with complex structures, preserving internal struc-
tural continuity, reducing fragmentation in segmentation results, and opti-
mizing segmentation edges [8]. Early applications of connectivity in deep
learning primarily involved using traditional image segmentation methods
for post-processing, such as applying the watershed algorithm [9] to refine
the output of the DeepLab [10] model to enhance performance. These mod-
els did not truly integrate connectivity at a deeper level. However, with
the advancement of connectivity technology, connectivity-based models have
emerged. Traditional pixel-based segmentation mainly emphasizes categori-
cal features, such as boundaries, whereas connectivity-based models exhibit
superior capabilities in processing images with complex structures. In the
field of deep learning for image segmentation, new applications leveraging
connectivity continue to emerge.

Nevertheless, these connectivity-based networks often model connectivity
as an additional feature injection and significantly enhance it within mod-
ules [8, 11, 12, 13]. This approach may not be optimal because feature maps
contain limited feature information. While extensive enhancement of con-
nectivity features achieves good results in connectivity feature extraction, it
simultaneously affects the acquisition of other features. These connectivity-
based medical image segmentation networks lack a standardized method to
measure the feature strength of different features in the feature space or to
distinguish between them. These diverse features aggregate in the space,
collectively forming the feature map.
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Therefore, to address these issues:

1. This work decouples feature spaces by quantifying connectivity features
relative to other features through standardized metrics.

2. We propose a Deep Connectivity Feature Fusion-Separation Network
(DCFFSNet) based on feature space decoupling. By adaptively balanc-
ing the relative strength between connectivity scales and multi-scale
features, it effectively resolves edge detail delineation challenges.

2. Related Work

2.1. Connectivity Mask

Traditional pixel-based segmentation methods primarily focus on categor-
ical features, whereas connectivity-based models demonstrate superior per-
formance in processing images with complex structures. After connectivity
was widely adopted in classical image processing methods to describe topo-
logical properties [14, 15], it also found new applications in deep learning-
based image segmentation [17, 18, 19, 20]. Connectivity-based segmentation
networks employ connectivity masks as labels. Typically, these masks con-
sist of 8 channels (for 2D images, corresponding to the x and y axes) or 26
channels (for 3D images, corresponding to the x, y, and z axes) [21], where
each channel indicates whether a pixel in the original image belongs to the
same class as its neighboring pixel in a specific direction.

A special case arises when converting standard masks to connectivity
masks at image boundaries. For example, when performing upward con-
nectivity operations on the top row of pixels, conventional methods treat
non-existent neighboring positions as background (label 0). However, in this
paper, such positions are assigned the same label as the pixel itself. This ap-
proach ensures that all eight channels in the connectivity mask’s boundary re-
gions retain their classification labels, thereby imposing stronger constraints
on segmentation results near edges (where, under the original computation,
at least three channels would be set to background).

2.2. Bilateral Voting (BV) Module and Region-guided Channel Aggregation
(RCA)

After obtaining the connectivity mask, since the validation process re-
quires converting the connectivity mask back to a general image mask, Yang
et al. [16] were the first to propose a bilateral voting mechanism and a
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region-guided channel aggregation method to address the conversion between
connectivity masks and general image masks.

The connectivity mask enhances consistency between adjacent pixels through
the bilateral voting module. Because the connectivity mask only multiplies
adjacent pixels of the same class—meaning the values of the two correspond-
ing pixels in the connectivity mask should be closely related—the values in
the corresponding two channels must belong to the same category to indicate
consistent classification results. In bilateral voting, each pair of elements in
the connectivity output XC is multiplied, and the result is assigned to these
two elements. The resulting bilateral voting output XB, referred to as the
Bicon map, is treated as the connectivity mask Y C in the final output.

Each channel in the Bicon map displays the bilateral class probability
distribution in a specific direction, reflecting the categorical relationship be-
tween a pixel and its neighboring pixels. The region-guided channel aggre-
gation (RCA) method converts the Bicon map into a single-channel output
probability through a mapping function.

XB
i Mask(x, y) = {f{XB

9−i(x, y)}}8i=1 (1)

Here, f can be any aggregation function. In this paper, we employ the
max operation for channel aggregation, selecting the highest probability from
the eight channels as the final predicted probability distribution.

2.3. Attention Mechanism

The Attention Mechanism [22] simulates the way humans focus on differ-
ent regions with varying levels of attention and has been widely adopted in
computer vision.

In image segmentation, the two most common and fundamental attention
mechanisms are channel attention [23] and spatial attention [24]. In the
channel attention mechanism, w assigns different weights to each channel
by capturing the feature strength and importance within the channels. In
spatial attention, w captures the feature strength and importance at different
coordinates in the image or feature map, assigning distinct weights to each
location.

4



3. Method

3.1. DCFFSNet Model

This paper proposes a DCFFSNet based on connectivity decoupling. The
DCFFSNet adopts a typical U-shaped encoder-decoder architecture, and Fig-
ure 1 illustrates the structure of DCFFSNet.

Figure 1: Structure of the proposed DCFFSNet model, which consists of four components:
the backbone network, the deeply supervised connectivity representation injection module,
the multi-scale residual convolution module, and the directional convolution module.

3.2. Deeply Supervised Connectivity Representation Injection Module (DSCRIM)

The DSCRIM is positioned at the bottleneck layer, where it injects con-
nectivity features prominently into the feature space from the bottom layer
through deep supervision to decouple connectivity features from classification
features. This module significantly enhances the connectivity representation
information of the feature map by employing rapid upsampling and connec-
tivity grouping strategies, thereby capturing the connectivity scale features
at the bottom layer.

Figure 2 illustrates the detailed structure of the DSCRIM. Specifically, the
DSCRIM first performs multi-fold upsampling on the bottom-layer feature
map to generate the corresponding deep supervision output and injects the
connectivity representation prominently into the network. Subsequently, it
learns connectivity features at the channel level through the connectivity
grouping strategy, further optimizing feature representation.
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Figure 2: Structure of DSCRIM

First, the module takes the input bottom-layer feature map F5, performs
convolution and multi-fold upsampling (Upsample 32), and then applies a
1 × 1 convolution to obtain the output POUT of the original size. This out-
put is used to inject prominent connectivity representations into the bottom
layer through deep supervision, effectively capturing global connectivity in-
formation in the feature map. Next, global average pooling (GAP) is applied
to POUT , and the number of channels is adjusted to match the original in-
put via a 1 × 1 convolution. After passing through an activation function,
a set of connectivity features Padd is generated to represent the connectivity
relationships between channels.

Pout = Conv1×1(Upsample32(Conv1×1(F5))) (2)

Padd is divided into 8 groups, each corresponding to connectivity features
Pi in different directions. The input feature map F5 is also divided into 8
groups, and a shift operation is applied to each group to capture spatial
dependencies in different directions, resulting in Xi.

Next, the module performs connectivity representation fusion for each
group of features Xi and Ci through the following steps:

1. Pass Xi through the spatial attention module (SAM) and the channel
attention module (CAM) to capture long-range spatial dependencies
and inter-channel interaction information, respectively.

2. Add the outputs of spatial attention and channel attention to obtain
a fused feature representation combining both spatial and channel at-
tention.
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3. Multiply the fused features with the connectivity representation Pi

element-wise along the channel dimension to selectively enhance or sup-
press features with specific directional information.

4. Further optimize the processed features using a 1× 1 convolution and
add them to the original features to retain the original information,
resulting in the intermediate feature FD.

F i
D = Xi + Conv1×1(SpatialAtt(Xi) + ChannelAtt(Xi)⊙ Pi) (3)

Here, ⊙ denotes element-wise multiplication, SpatialAtt and ChannelAtt
represent spatial attention and channel attention, respectively.

Finally, the 8 groups of processed features are concatenated to restore the
original dimensions, and a 1× 1 convolution is applied to decode the feature
information, yielding the final bottom-layer connectivity feature output C5.

C5 = Conv1×1(cat(F
1
D, . . . , F

8
D)) (4)

3.3. Multi-Scale Feature Fusion Module (MSFFM)

The MSFFM fuses connectivity scales and feature scales of different di-
mensions to obtain the next dimension’s connectivity scale features or hybrid
features. It decouples the connectivity space and feature space through a
self-attention mechanism.

Figure 3 illustrates the structure of the MSFFM. The module significantly
enhances the spatial location information and global contextual dependencies
of the connectivity scale feature map by fusing two types of inputs: feature
scales and connectivity scales.
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Figure 3: Structure of MSFFM

For feature-scale inputs, they are divided into eight groups, with the fea-
tures in each group referred to as group features. The features undergo av-
erage pooling along both the horizontal and vertical directions. This process
captures long-range dependencies in the horizontal dimension while retaining
positional information in the vertical dimension. Subsequently, the pooled
results from both directions are concatenated and encoded into intermediate
weights using a convolution operation W .

W = Conv(cat(AvgH(Fi), AvgW (Fi))) (5)

Subsequently, crop W along the spatial direction, and reshaped back
to the original structure (the horizontal and vertical directions). Finally,
a gating mechanism is used to generate the weight representation. After
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multiplying with the input Fi, the intermediate features at the feature scale
are obtained through normalization.

XF = BatchNormalize(Fi ⊙ Sigmoid(split(W ))) (6)

For connectivity scale input C, divide it into 8 groups, each group is
characterized by Ci. The difference is that here 3 × 3 Conv is used to get
the intermediate feature of connectivity scale XC :

XC = BatchNormalize(Conv3×3(Ci)) (7)

After obtaining the intermediate features between the connectivity scale
and the feature scale XC , XF , learn about both across space. The specific
operation is as follows:

On features XF , the 2D global average pooling layer is used to encode
the global spatial information, and then Softmax get the normalized channel
descriptor WF . Multiply WF with features XC . That is, the weighted sum of
all channel features at each location is obtained to obtain the global spatial
attention representation in the connectivity scale WFC .

WF ,WFC = reshape(Softmax(Avg(XF ))), reshape(WF • reshape(XC))
(8)

Similar to the above operation, processing XC obtain global spatial at-
tention representation on the feature scale WCF .

Finally, the two kinds of spatial attention are aggregated and the final
weight representation Wa is obtained using the gating mechanism. The two
inputs F and C are calibrated to get the outputs Cnext and Fnext.

Cnext, Fnext = sigmoid(WCF +WFC) • (C,F ) (9)

Since the above operations are performed in all groups, the resulting out-
put feature Cnext still has the original grouping structure of the connectivity
scale and can be invoked repeatedly in multiple layers.

In particular, in the last layer of the model, the model uses the final
output of a mixture of both.

3.4. Multi-Scale Residual Convolution Module (MSRCM)

MSRCM performs multi-scale feature extraction in up-sampling.
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Figure 4 shows the structure of MSRCM. MSRCM extracts multi-scale
features through convolution kernels of different sizes and alleviates the prob-
lem of gradient disappearance through residual connection, thus improving
the performance of the model.

Figure 4: Structure of MSRCM

Y = ReLU(BN(Conv1×1(X +ReLU(
∑

i=1,3,5,7

BN(Convi×i(X)))))) (10)

MSRCM uses four convolutional kernels of different sizes to extract input
features X to obtain multi-scale feature information. Then, these features
are normalized by BN and added together for fusion. After ReLU operation,
they are residual, and then re-encoded with a 1 × 1 convolutional kernel to
obtain output Y.

3.5. Directional Convolution (PConv)

The directional convolution method PConv (Path Convolution) optimizes
the segmentation effect of the connectivity mask by grouping and shifting,
transforming the output from the highest layer into the final prediction. Fig-
ure 5 illustrates the structure of PConv. PConv groups and shifts the feature
maps, applies a completely identical convolution kernel within each group,
concatenates the results, and encodes them to achieve the interpretability of
the connectivity mask.
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Figure 5: Structure of Directional Convolution (PConv)

Y = Conv1×1(ReLU(BN(cat(Conv3×3(shift(Xi)))))) (11)

PConv divides the input feature map X into eight groups, performs shift
operations corresponding to the connectivity direction within each group,
and applies a 3× 3 convolution kernel for convolution. The results are then
reassembled to their original size and decoded using a 1×1 convolution kernel
to produce the final model prediction output.

3.6. Loss Function

This paper considers the connectivity output XC as the core output of
the model. In Section 2.1, it is described that the connectivity mask can be
derived from the regular mask X through a simple multiplication operation.
In Section 2.2, the connectivity output XC is obtained through bilateral
voting to generate the dual connectivity mask XB, which is then transformed
into the standard mask X via RCA.

Therefore, considering the above different masks, the loss function of the
model is defined as follows:

L = LMainBCE + 0.2 ∗ LBBCE + 0.8 ∗ LCBCE (12)

LMainBCE = LBCE(X, Y ) = X ∗ Y + (1−X) ∗ (1− Y ) (13)

LBBCE = LBCE(X
B, Y C) = XB ∗ Y C + (1−XB) ∗ (1− Y C) (14)

LCBCE = LBCE(X
C , Y C) = XC ∗ Y C + (1−XC) ∗ (1− Y C) (15)

Among them, the superscript B refers to the dual pass mask, C refers
to the connectivity mask, and the superscript without refers to the standard
mask.
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Loss = 0.2 ∗ L(output1) + L(output2) (16)

The model proposed in this paper has two outputs, where output1 is the
intermediate output of deep supervised connectivity representation injection,
and output2 is the final output of the model.

4. Experiments

4.1. Dataset

In order to verify the performance of the model, we used three different
datasets for experiments, including ISIC2018 dataset [25], DSB2018 dataset
[26] and MoNuSeg dataset [27].

4.2. Comparative Experiments

In order to verify the effectiveness of the proposed DCFFSNet network,
we selected more classical medical image segmentation networks U-Net [28],
UNet++ [29], AttUNet [30], TransUNet [31], CMUNet [32], CSCAUNet [33]
for comparison. In this paper, the Dice Similarity Coefficient (DSC) and In-
tersection over Union (IoU) were selected as the core quantitative evaluation
metrics.

Table 1 shows the model performance of DCFFSNet under different datasets,
where ± represents the standard deviation in a five-fold cross-validation en-
vironment, which reflects the stability of the model to some extent. The
experimental results show that our model is the best.

Table 1: Comparative experimental results of DCFFSNet

Model Year
ISIC2018 DSB2018 MoNuSeg

FLOPs Params
IoU(%) Dice(%) IoU(%) Dice(%) IoU(%) Dice(%)

UNet [28] 2015 79.8 ± 0.7 86.9 ± 0.8 83.8 ± 0.3 90.5 ± 0.2 63.1 ± 0.8 76.6 ± 0.7 50.166G 34.527M
UNet++ [29] 2018 79.9 ± 0.1 87.0 ± 0.2 84.5 ± 0.1 91.0 ± 0.1 63.7 ± 0.6 76.9 ± 0.5 106.162G 36.630M
AttUNet [30] 2019 81.8 ± 0.1 88.7 ± 0.2 84.1 ± 0.1 90.7 ± 0.1 64.1 ± 0.8 77.3 ± 0.8 51.015G 34.879M
TransUNet [31] 2021 80.9 ± 0.8 86.9 ± 0.2 84.7 ± 0.2 91.2 ± 0.3 65.7 ± 0.7 78.2 ± 0.7 32.238G 93.231M
CMUNet [32] 2023 82.2 ± 0.3 88.8 ± 0.3 83.9 ± 0.2 90.5 ± 0.2 66.1 ± 0.7 78.5 ± 0.8 69.866G 49.932M
CSCAUNet [33] 2024 82.0 ± 0.4 88.5 ± 0.4 84.4 ± 0.3 90.9 ± 0.3 66.4 ± 0.5 78.8 ± 0.6 10.517G 35.275M
DCFFSNet (Ours) - 83.5 ± 0.3 90.0 ± 0.2 85.4 ± 0.1 92.1 ± 0.1 67.2 ± 0.9 79.7 ± 0.9 21.732G 52.717M

By analyzing and comparing the experimental metrics, the DCFFSNet
network proposed in this paper achieved the best Dice coefficient and IoU
scores across three datasets. In the ISIC2018 dataset, the model scored 83.5
± 0.3 in IoU and 90.0 ± 0.2 in Dice coefficient, which are 1.3% and 1.2%
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higher than the second-best CMUNet, respectively. In the DSB2018 dataset,
the model scored 85.4% in IoU and 92.1% in Dice coefficient, which are 0.9%
and 0.7% higher than the second-best TransUNet. In the MoNuSeg dataset,
the model scored 67.2% in IoU and 79.7% in Dice coefficient, which are 0.8%
and 0.9% higher than the second-best CSCAUNet.

DCFFSNet achieves an effective balance between computational efficiency
and model performance. With a computational load of only 21.732 GFLOPs,
it performs significantly lower than models like U-Net, UNet++, and CMUNet,
while marginally exceeding CSCAUNet. This indicates reduced computa-
tional resource requirements during inference, enabling more efficient segmen-
tation tasks—particularly suitable for deployment in computation-limited
scenarios. Regarding parameters (52.717M), although DCFFSNet doesn’t
attain the lowest count, it delivers high segmentation performance with-
out substantially increasing parametric burden. This demonstrates its opti-
mal balance between model complexity and effectiveness. Collectively, while
DCFFSNet doesn’t dominate in absolute computational/parametric metrics,
its lower computational load enhances deployment feasibility. The architec-
ture demonstrates promise as an efficient segmentation model by maintaining
favorable performance-efficiency trade-offs.

The visualization results in Figures 6, 7, and 8 demonstrate that DCFFS-
Net significantly outperforms comparative models including UNet and UNet++
in edge refinement, internal topology preservation, and overall segmentation
quality. Unlike other models that frequently suffer from edge blurring, bound-
ary misalignment, and internal discontinuities, DCFFSNet achieves precise
edge localization with sharp contours highly consistent with ground-truth
annotations while effectively maintaining intra-region connectivity and elim-
inating discontinuity artifacts, resulting in optimal morphological coherence
and detail representation. By combining superior segmentation accuracy
with operational efficiency through low computational load and moderate
parameters, DCFFSNet establishes the best performance-efficiency balance
among all evaluated models, highlighting its strong potential as an efficient
segmentation solution and demonstrating significant practical value for flex-
ible deployment in real-world medical image analysis applications.
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Figure 6: Visualization reference of image comparison experiment of ISIC2018 dataset
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Figure 7: Visualization reference of DSB2018 dataset comparison
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Figure 8: Visual reference of image comparison experiment on MoNuSeg dataset

4.3. Ablation Experiments

In order to verify the effectiveness of the proposed method and strictly
control the variables, this section still selects ISIC2018 dataset, DSB2018
dataset and MoNuSeg dataset for ablation experiments.

Table 2 shows the results of the ablation experiment. In this paper, the
ablation experiment is carried out by removing or replacing modules. The
specific network structure design is as follows:

• DCFFSNet: Deep connectivity feature fusion and separation network
proposed in this chapter.

• w/o DS: The deep supervision connectivity representation injection
module DSCRIM is removed, and a copy of the feature map F5 output
by the main network is directly copied to the multi-scale feature fusion
module.

• w/o MSF: The multi-scale feature fusion module MSFFM is removed,
and the transmitted features are directly spliced with the upsampling
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features in a way of addition (to ensure the consistency of channel
numbers).

• w/o MSR: The multi-scale residual convolution module MSRCM is
replaced with the original residual structure.

Table 2: Experimental results of DCFFSNet ablation

Dataset Net IoU(%) Dice(%)

ISIC2018

w/o DS 81.1 ± 0.4 87.3 ± 0.5
w/o MSF 82.8 ± 0.1 88.9 ± 0.1
w/o MSR 83.2 ± 0.2 89.5 ± 0.2
DCFFSNet (Ours) 83.5 ± 0.3 90.0 ± 0.2

DSB2018

w/o DS 83.7 ± 0.2 89.9 ± 0.2
w/o MSF 84.8 ± 0.1 91.1 ± 0.1
w/o MSR 85.0 ± 0.1 91.5 ± 0.1
DCFFSNet (Ours) 85.4 ± 0.1 92.1 ± 0.1

MoNuSeg

w/o DS 63.1 ± 1.1 77.2 ± 1.0
w/o MSF 64.2 ± 0.7 78.3 ± 0.7
w/o MSR 66.5 ± 0.6 79.2 ± 0.6
DCFFSNet (Ours) 67.2 ± 0.9 79.7 ± 0.9

The DSCRIM, MSFFM, and MSR modules designed in this section have
all positively impacted the network. For instance, in the ISIC dataset, remov-
ing the DSCRIM module resulted in a 2.4% decrease in the Dice coefficient
score and a 2.7% decrease in the IoU score of DCFFSNet. Removing the
MSFFM module led to a 0.7% decrease in the Dice coefficient score and a
1.1% decrease in the IoU score. Replacing the MSR module resulted in a
0.3% decrease in the Dice coefficient score and a 0.5% decrease in the IoU
score.

Figures 9, 10 and 11 show the visual results of ablation experiments.
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Figure 9: Ablation experiment results of ISIC2018 dataset

Figure 10: Ablation experiment results of DSB2018 dataset
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Figure 11: Results of MoNuSeg dataset ablation experiment

The visualization results from the ablation experiments clearly show that
the collaborative effects of various modules have different impacts on the
model proposed in this chapter. The deep supervision connectivity represen-
tation injection module significantly influences the final model results, while
DSCRIM has a substantial impact on both overall feature acquisition and
connectivity acquisition. The multi-scale feature fusion module (MSFFM)
has a significant effect on the internal topology. By integrating connectivity
and feature scales, removing it would focus more on feature scale information,
leading to the destruction of both internal and edge topologies. After the
collaborative effects of multiple modules, the model proposed in this chapter
not only ensures segmentation performance but also accurately determines
boundary positions while maintaining internal structural consistency, ulti-
mately achieving effective segmentation of medical images.

In addition to the ablation experiments mentioned above, corresponding
experiments were also carried out on the weight allocation of the loss function
used in this paper. Specifically, the weight of L(output1) was adjusted, and
the results are shown in Table 3. In which w = 0 means that the weight is
cancelled, that is, the deep supervision method is no longer used to inject
connectivity scale features.
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Table 3: Weight ablation results of L(output1)

Dataset Evaluating W IoU(%) Dice(%)

ISIC2018

0 81.7 ± 0.2 88.1 ± 0.2
0.1 82.7 ± 0.3 88.8 ± 0.3
0.2 83.5 ± 0.3 90.0 ± 0.2
0.3 83.1 ± 0.2 89.5 ± 0.3

DSB2018

0 84.9 ± 0.1 91.5 ± 0.1
0.1 85.2 ± 0.1 91.9 ± 0.1
0.2 85.4 ± 0.1 92.1 ± 0.1
0.3 85.1 ± 0.1 91.7 ± 0.1

MoNuSeg

0 64.8 ± 0.8 78.0 ± 0.8
0.1 65.7 ± 0.9 78.5 ± 0.9
0.2 67.2 ± 0.9 79.7 ± 0.9
0.3 66.2 ± 0.9 78.7 ± 0.9

The results show that the model performs best when the weight of L(output1)
is 0.2. However, after the use of deep supervision to inject connectivity scale
features is cancelled, the performance of the model decreases significantly,
which also reflects the important role played by DSCRIM module in the
model to some extent.

5. Discussion

The proposed algorithm excels in preserving internal topological struc-
tures and smoothing edge regions, effectively capturing target details and
generating smooth segmentation boundaries; however, it demonstrates lim-
ited overall metric improvements (e.g., Dice coefficient/IoU) compared to
state-of-the-art methods, likely due to insufficient global consistency focus
while optimizing local details and potential slight accuracy reduction from
connectivity constraints despite enhanced topological integrity. Future re-
search should prioritize balanced local-global optimization through enhanced
consistency mechanisms, develop parameterized strategies for dynamically
adapting connectivity strength across scenarios, and integrate connectivity
with advanced techniques like attention mechanisms or multi-scale feature
fusion to comprehensively boost performance.
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6. Data Statement

The ISIC2018 (International Skin Imaging Collaboration 2018) dataset
[25], released by the International Skin Imaging Collaboration, is designed
for skin lesion segmentation. It comprises 2,594 dermoscopic images with
corresponding annotations. Image resolutions range from 6748 × 4499 pix-
els to 718 × 542 pixels. The DSB2018 (Data Science Bowl 2018) dataset
[26], published via the Kaggle platform, was created for a nucleus segmen-
tation competition. It contains 670 microscopy images (stage1 train subset)
with nucleus annotations. Image resolutions vary between 256 × 256 pixels
and 1024 × 1024 pixels. The MoNuSeg dataset [27], released by the U.S.
National Institutes of Health (NIH), specializes in nucleus segmentation of
histopathology images. It consists of 44 high-resolution images (30 training
+ 14 test) at 1000× 1000 pixel resolution, each with corresponding nucleus
annotations.
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